157 research outputs found

    Inhomogeneous magnetization in dipolar ferromagnetic liquids

    Full text link
    At high densities fluids of strongly dipolar spherical particles exhibit spontaneous long-ranged orientational order. Typically, due to demagnetization effects induced by the long range of the dipolar interactions, the magnetization structure is spatially inhomogeneous and depends on the shape of the sample. We determine this structure for a cubic sample by the free minimization of an appropriate microscopic density functional using simulated annealing. We find a vortex structure resembling four domains separated by four domain walls whose thickness increases proportional to the system size L. There are indications that for large L the whole configuration scales with the system size. Near the axis of the mainly planar vortex structure the direction of the magnetization escapes into the third dimension or, at higher temperatures, the absolute value of the magnetization is strongly reduced. Thus the orientational order is characterized by two point defects at the top and the bottom of the sample, respectively. The equilibrium structure in an external field and the transition to a homogeneous magnetization for strong fields are analyzed, too.Comment: 17 postscript figures included, submitted to Phys. Rev.

    Evolution of Female Preference for Younger Males

    Get PDF
    Previous theoretical work has suggested that females should prefer to mate with older males, as older males should have higher fitness than the average fitness of the cohort into which they were born. However, studies in humans and model organisms have shown that as males age, they accumulate deleterious mutations in their germ-line at an ever-increasing rate, thereby reducing the quality of genes passed on to the next generation. Thus, older males may produce relatively poor-quality offspring. To better understand how male age influences female mate preference and offspring quality, we used a genetic algorithm model to study the effect of age-related increases in male genetic load on female mate preference. When we incorporate age-related increases in mutation load in males into our model, we find that females evolve a preference for younger males. Females in this model could determine a male's age, but not his inherited genotype nor his mutation load. Nevertheless, females evolved age-preferences that led them to mate with males that had low mutation loads, but showed no preference for males with respect to their somatic quality. These results suggest that germ-line quality, rather than somatic quality, should be the focus of female preference in good genes models

    The Impact of Realistic Age Structure in Simple Models of Tuberculosis Transmission

    Get PDF
    Background : Mathematical models of tuberculosis (TB) transmission have been used to characterize disease dynamics, investigate the potential effects of public health interventions, and prioritize control measures. While previous work has addressed the mathematical description of TB natural history, the impact of demography on the behaviour of TB models has not been assessed. Methods : A simple model of TB transmission, with alternative assumptions about survivorship, is used to explore the effect of age structure on the prevalence of infection, disease, basic reproductive ratio and the projected impact of control interventions. We focus our analytic arguments on the differences between constant and exponentially distributed lifespans and use an individual-based model to investigate the range of behaviour arising from realistic distributions of survivorship. Results : The choice of age structure and natural (non-disease related) mortality strongly affects steady-state dynamics, parameter estimation and predictions about the effectiveness of control interventions. Since most individuals infected with TB develop an asymptomatic latent infection and never progress to active disease, we find that assuming a constant mortality rate results in a larger reproductive ratio and an overestimation of the effort required for disease control in comparison to using more realistic age-specific mortality rates. Conclusions : Demographic modelling assumptions should be considered in the interpretation of models of chronic infectious diseases such as TB. For simple models, we find that assuming constant lifetimes, rather than exponential lifetimes, produces dynamics more representative of models with realistic age structure

    Localized breathing solutions for Bose-Einstein condensates in periodic traps

    Full text link
    We demonstrate the existence of localized oscillatory breathers for quasi-one-dimensional Bose-Einstein condensates confined in periodic potentials. The breathing behavior corresponds to position-oscillations of individual condensates about the minima of the potential lattice. We deduce the structural stability of the localized oscillations from the construction. The stability is confirmed numerically for perturbations to the initial state of the condensate, to the potential trap, as well as for external noise. We also construct periodic and chaotic extended oscillations for the chain of condensates. All our findings are verified by direct numerical integration of the Gross-Pitaevskii equation in one dimension.Comment: LaTeX, 6 pages, 7 postscript figures, extended version of previous uploa

    Marine fish traits follow fast-slow continuum across oceans

    Get PDF
    A fundamental challenge in ecology is to understand why species are found where they are and predict where they are likely to occur in the future. Trait-based approaches may provide such understanding, because it is the traits and adaptations of species that determine which environments they can inhabit. It is therefore important to identify key traits that determine species distributions and investigate how these traits relate to the environment. Based on scientific bottom-trawl surveys of marine fish abundances and traits of >1,200 species, we investigate trait-environment relationships and project the trait composition of marine fish communities across the continental shelf seas of the Northern hemisphere. We show that traits related to growth, maturation and lifespan respond most strongly to the environment. This is reflected by a pronounced “fast-slow continuum” of fish life-histories, revealing that traits vary with temperature at large spatial scales, but also with depth and seasonality at more local scales. Our findings provide insight into the structure of marine fish communities and suggest that global warming will favour an expansion of fast-living species. Knowledge of the global and local drivers of trait distributions can thus be used to predict future responses of fish communities to environmental change.Postprint2,92

    What’s retinoic acid got to do with it? Retinoic acid regulation of the neural crest in craniofacial and ocular development

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/151310/1/dvg23308.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/151310/2/dvg23308_am.pd

    The spread of a financial virus through Europe and beyond

    Get PDF
    We analyse the importance of international relations between countries on the financial stability. The contagion effect in the network is tested by implementing an epidemiological model, comprising a number of European countries and using bilateral data on foreign claims between them. Banking statistics of consolidated foreign claims on ultimate risk bases, obtained from the Banks of International Settlements, allow us to measure the exposure of contagion spreading from a particular country to the other national banking systems. We show that the financial system of some countries, experiencing the debt crisis, is a source of global systemic risk because they threaten the stability of a larger system, being a global threat to the intoxication of the world economy and resulting in what we call a `financial virus'. Illustrative simulations were done in the NetLogo multi-agent programmable modelling environment and in MATLAB.publishe

    A Human Protein Interaction Network Shows Conservation of Aging Processes between Human and Invertebrate Species

    Get PDF
    We have mapped a protein interaction network of human homologs of proteins that modify longevity in invertebrate species. This network is derived from a proteome-scale human protein interaction Core Network generated through unbiased high-throughput yeast two-hybrid searches. The longevity network is composed of 175 human homologs of proteins known to confer increased longevity through loss of function in yeast, nematode, or fly, and 2,163 additional human proteins that interact with these homologs. Overall, the network consists of 3,271 binary interactions among 2,338 unique proteins. A comparison of the average node degree of the human longevity homologs with random sets of proteins in the Core Network indicates that human homologs of longevity proteins are highly connected hubs with a mean node degree of 18.8 partners. Shortest path length analysis shows that proteins in this network are significantly more connected than would be expected by chance. To examine the relationship of this network to human aging phenotypes, we compared the genes encoding longevity network proteins to genes known to be changed transcriptionally during aging in human muscle. In the case of both the longevity protein homologs and their interactors, we observed enrichments for differentially expressed genes in the network. To determine whether homologs of human longevity interacting proteins can modulate life span in invertebrates, homologs of 18 human FRAP1 interacting proteins showing significant changes in human aging muscle were tested for effects on nematode life span using RNAi. Of 18 genes tested, 33% extended life span when knocked-down in Caenorhabditis elegans. These observations indicate that a broad class of longevity genes identified in invertebrate models of aging have relevance to human aging. They also indicate that the longevity protein interaction network presented here is enriched for novel conserved longevity proteins
    corecore